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Abstract

The Fourier transform of the deeply virtual Compton scattering amplitude (DVCS) with respect

to the skewness parameter ζ = Q2/2p · q can be used to provide an image of the target hadron

in the boost-invariant variable σ, the coordinate conjugate to light-front time τ = t + z/c. As an

illustration, we construct a consistent covariant model of the DVCS amplitude and its associated

generalized parton distributions using the quantum fluctuations of a fermion state at one loop in

QED, thus providing a representation of the light-front wavefunctions of a lepton in σ space. A

consistent model for hadronic amplitudes can then be obtained by differentiating the light-front

wavefunctions with respect to the bound-state mass. The resulting DVCS helicity amplitudes are

evaluated as a function of σ and the impact parameter$b⊥, thus providing a light-front “photograph”

of the target hadron in a frame-independent three-dimensional light-front coordinate space. We

find that in the models studied, the Fourier transform of the DVCS amplitudes exhibit diffraction

patterns. The results are analogous to the diffractive scattering of a wave in optics where the

distribution in σ measures the physical size of the scattering center in a one-dimensional system.
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I. INTRODUCTION

Deeply virtual Compton scattering (DVCS), γ∗(q) + p(P ) → γ(q′) + p(P ′), where

the virtuality of the initial photon Q2 = −q2 is large, provides a valuable probe of the

elementary quark structure of the target proton near the light-cone. At leading twist, QCD

factorization applies [1], and each DVCS helicity amplitude factorizes as a convolution in x

of the hard γ∗q → γq Compton amplitude with a hadronic sub-amplitude constructed from

the Generalized Parton Distributions (GPDs) H(x, ζ , t), E(x, ζ , t), H̃(x, ζ , t) and Ẽ(x, ζ , t).

Here x is the light cone momentum fraction of the struck quark; the skewness ζ = Q2

2P ·q

measures the longitudinal momentum transfer in the DVCS process.

Measurements of the momentum and spin dependence of the DVCS process in e± p →

γ e± p can provide a remarkable window to the QCD structure of hadrons at the amplitude

level. The interference of the DVCS amplitude and the coherent Bethe-Heitler amplitude

leads to an e± asymmetry which is related to the real part of the DVCS amplitude [2].

The imaginary part can also be accessed through various spin asymmetries [3]. In the

forward limit of zero momentum transfer, the GPDs reduce to ordinary parton distributions;

on the other hand, the integration of GPDs over x reduces them to electromagnetic and

gravitational form factors.

The DVCS helicity amplitudes can be constructed in light-cone gauge from the overlap

of the target hadron’s light-front wavefunctions. [4, 5]. Since the DVCS process involves off-

forward hadronic matrix elements of light-front bilocal currents, the overlaps are in general

non-diagonal in particle number, unlike ordinary parton distributions. Thus in the case of

GPDs, one requires not only the diagonal parton number conserving n → n overlap of the

initial and final light-front wavefunctions, but also an off-diagonal n + 1 → n − 1 overlap,

where the parton number is decreased by two. Thus the GPDs measure hadron structure

at the amplitude level in contrast to the probabilistic properties of parton distribution

functions.

The GPDs have become objects of much theoretical as well as experimental attention

since they provide a rich source of information of hadron structure. Burkardt has noted

that a Fourier Transform (FT) of the GPDs with respect to the transverse momentum

transfer ∆⊥ in the idealized limit ζ = 0 measures the impact parameter dependent parton

distributions q(x, b⊥) defined from the absolute squares of the hadron’s light-front wave
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functions (LFWFs) in x and impact space [6, 7]. The impact representation on the light-

front was first introduced by Soper [8] in the context of the FT of the elastic form factor

(see Appendix A). The function q(x, b⊥) is defined for a hadron with sharp plus momentum

P+, localized in the transverse plane, such that the transverse center of momentum vanishes

R⊥ = 0. [ One can also work with a wave-packet localized in the transverse position space

in order to avoid a state normalized to a δ-function. ] Thus q(x, b⊥) gives simultaneous

information on the distributions of a quark as a function of the longitudinal light-front

momentum fraction x = k+/P+ = (k0 + k3)/(P 0 + P 3) and the transverse distance b⊥ of

the parton from the center of the proton in the transverse plane. We use the standard LF

coordinates P± = P 0 ± P 3, y± = y0 ± y3. Since the proton is on-shell, P+P− − P 2
⊥ = M2

p .

Since the incoming photon is space-like (q2 < 0) and the final photon is on-shell (q′2 = 0),

the skewness ζ is never zero in a physical experiment. In this paper, we will investigate

the DVCS amplitude in the longitudinal position space by taking the FT with respect to

ζ . We show that the FT of the DVCS amplitude in ζ reveals the structure of a hadron

target in a longitudinal impact parameter space. Thus, our work is suited for the direct

analysis of experimental data and is complementary to the work of Burkardt and Soper.

Physically, the FT of the DVCS amplitude allows one to measure the correlation within

the hadron between the incoming and outgoing quark currents at transverse separation b⊥

and longitudinal separation σ = b−P+/2 at fixed light-front time τ = z + t/c. Since Lorentz

boosts are kinematical in the front form, the correlation determined in the three-dimensional

b⊥, σ space is frame-independent.

Even though light-front dynamics was proposed by Dirac [9] more than fifty years ago,

and the utility of the light-front momentum fraction x = k+/P+ dates to the inception of

the Feynman parton model, very little is known about the longitudinal coordinate space

structure of hadron wave functions and related physical observables. To the best of our

knowledge, the first work to investigate this subject is Ref. [10] where it is shown that by

Fourier transforming the form factors one observes profiles in b− with kinks and anti-kinks. In

addition to the light-front longitudinal structure of DVCS amplitudes in one-loop QED and

meson models, we also present the corresponding structure of the light-front wavefunctions

(LFWFs) of the quantum fluctuations of a lepton to order e2 in QED.

Burkardt [6] has noted the possibility of taking the FT with respect to the longitudinal

momentum of the active quark. However, since the GPDs depend on a sharp x, the Heisen-
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berg uncertainty relation severely restricts the longitudinal position space interpretation of

GPDs. In contrast, we will deal directly with DVCS amplitudes which are integrated over

x and take the FT with respect to the longitudinal momentum transfer.

It has been shown in [11] that one can define a quantum mechanical Wigner distribution

for the relativistic quarks and gluons inside the proton. Integrating over k− and k⊥, one

obtains a four dimensional quantum distribution which is a function of &r and k+ where &r is

the quark phase space position defined in the rest frame of the proton. These distributions

are related to the FT of GPDs in the same frame. However, the Wigner distributions cannot

be measured experimentally.

In contrast, we will study the observable DVCS amplitudes directly in longitudinal po-

sition space. We shall show that the Fourier transforms of the DVCS amplitudes in the

variable σ = b−P+/2, where the three-dimensional coordinate &b = (b⊥, b−) is conjugate to

the momentum transfer &∆, provides a light-front “photograph” of the target hadron in a

frame-independent three-dimensional light-front coordinate space. We find that in the mod-

els studied, the Fourier transform of the DVCS amplitudes exhibit diffraction patterns. The

results are analogous to the diffractive scattering of a wave in optics where the distribution

in σ measures the physical size of the scattering center in a one-dimensional system.

A summary of our main results has been given in [12]. In this paper we will present a

detailed analysis and provide several additional results.

In order to illustrate the general framework, we will present an explicit calculation of the

FT of the DVCS on a fermion in QED at one-loop order [13]. In effect, we shall represent a

spin-1
2 system as a composite of a spin-1

2 fermion and a spin-1 vector boson, with arbitrary

masses [4]. This one-loop model is self consistent since it has the correct interrelation of

different Fock components of the state as given by the light-front eigenvalue equation [14].

In particular, its two- and three-body Fock components can be obtained analytically from

QED. This model has been used to calculate the spin and orbital angular momentum of

a composite relativistic system [15] as well as the GPDs in the impact parameter space

[16, 17]. The calculation is thus exact to O(α), and it gives the Schwinger anomalous

magnetic moment, the corresponding electron’s Dirac and Pauli form factors [15, 16] as

well as the correct gravitational form factors, including the vanishing of the anomalous

gravitomagnetic moment B(0) in agreement with the equivalence theorem [18]. In addition,

it provides a template for the wave functions of an effective quark-diquark model of the
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valence Fock state of the proton light-front wave function.

Deep inelastic scattering structure functions and their connection to the spin and orbital

angular momentum of the nucleon have been addressed for a dressed quark state in light-

front QCD in [19, 20] using a similar Fock space expansion of the state. This approach

has also been used to investigate the twist-three GPDs in [21]. We will also present here

numerical results for a simulated model for a meson-like hadron, which we obtain by taking

a derivative of the dressed electron LFWF with respect to the bound state mass M , thus

improving the behavior of the wave function towards the end points in x. In this model,

the DVCS amplitude is purely real. A similar power-law LFWF has been used in [22] to

construct the GPDs for a meson.

In principle, the LFWFs of hadrons in QCD can be computed using a nonperturbative

method such as Discretized Light Cone Quantization (DLCQ) where the LF Hamiltonian

is diagonalized on a free Fock basis [14]. This has been accomplished for simple confining

quantum field theories such as QCD(1 + 1) [23].

Models for the LFWFs of hadrons in (3 + 1) dimensions displaying confinement at

large distances and conformal symmetry at short distances have been obtained using the

AdS/CFT method [24]. We will also present the LFWFs in this hadron model in invariant

three dimensional coordinate space by Fourier transforming both x and k⊥.

The plan of the paper is as follows: Section II summarizes the kinematics of the DVCS

process. In Section III we give the analytic expressions for the DVCS amplitude and its

explicit formulae in QED at one loop. The calculation of the Fourier transform of the DVCS

amplitude for an electron target at one loop is given in Section IV. The simulated hadron

model is discussed in Section V. We then derive the DVCS amplitudes using a model meson

LFWF as obtained from holographic QCD in Section VI. A summary and the conclusions

are given in Section VII.

II. KINEMATICS

The kinematics of DVCS process has been given in detail in [4, 5]. One can work in a frame

where the momenta of the initial and final proton has a ∆ → −∆ symmetry [4]; however,

in this frame, the kinematics in terms of the parton momenta becomes more complicated.

Here, we shall use the frame of Ref. [4]. The momenta of the initial and final proton are

6



given by:

P =

(

P+ , &0⊥ ,
M2

P+

)

, (2.1)

P ′ =

(

(1 − ζ)P+ , −&∆⊥ ,
M2 + &∆2

⊥

(1 − ζ)P+

)

, (2.2)

where M is the proton mass. The four-momentum transfer from the target is

∆ = P − P ′ =

(

ζP+ , &∆⊥ ,
t + &∆2

⊥

ζP+

)

, (2.3)

where t = ∆2. In addition, overall energy-momentum conservation requires ∆− = P−−P ′−,

which connects &∆2
⊥, ζ , and t according to

t = 2P · ∆ = −
ζ2M2 + &∆2

⊥

1 − ζ
. (2.4)

The coordinate b conjugate to ∆ is defined by b · ∆ = 1
2b

+∆− + 1
2b

−∆+ − b⊥ · ∆⊥. We also

define the boost invariant variable σ = b−P+/2 so that 1
2b

−∆+ = 1
2b

−P+ζ = σζ . Thus σ is

an ‘impact parameter’ but in the boost-invariant longitudinal coordinate space.

It is convenient to choose a frame where the incident space-like photon carries q+ = 0 so

that q2 = −Q2 = −&q 2
⊥ (however, it is not mandatory to choose this frame):

q =

(

0 , &q⊥ ,
(&q⊥ + &∆⊥)2

ζP+
+

ζM2 + &∆2
⊥

(1 − ζ)P+

)

, (2.5)

q′ =

(

ζP+ , &q⊥ + &∆⊥ ,
(&q⊥ + &∆⊥)2

ζP+

)

. (2.6)

We will be interested in deeply virtual Compton scattering, where Q2 is large compared to

the masses and −t. Then, we have
Q2

2P · q
= ζ (2.7)

up to corrections in 1/Q2. Thus ζ plays the role of the Bjorken variable in deeply virtual

Compton scattering. For a fixed value of −t, the allowed range of ζ is given by

0 ≤ ζ ≤
(−t)

2M2

(
√

1 +
4M2

(−t)
− 1

)

. (2.8)
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III. DEEPLY VIRTUAL COMPTON SCATTERING

The virtual Compton amplitude Mµν(&q⊥, &∆⊥, ζ), i.e., the transition matrix element of

the process γ∗(q) + p(P ) → γ(q′) + p(P ′), can be defined from the light-cone time-ordered

product of currents

Mµν(&q⊥, &∆⊥, ζ) = i

∫

d4y e−iq·y〈P ′|TJµ(y)Jν(0)|P 〉 , (3.1)

where the Lorentz indices µ and ν denote the polarizations of the initial and final photons

respectively. In the limit Q2 → ∞ at fixed ζ and t the Compton amplitude is thus given by

M IJ(&q⊥, &∆⊥, ζ) = εI
µ ε∗Jν Mµν(&q⊥, &∆⊥, ζ) = −e2

q

1

2P̄+

∫ 1

ζ−1

dz

×
{

tIJ(z, ζ) Ū(P ′)

[

H(z, ζ , t) γ+ + E(z, ζ , t)
i

2M
σ+α(−∆α)

]

U(P )

}

, (3.2)

where P̄ = 1
2(P

′ + P ). For simplicity we only consider one quark with flavor q and electric

charge eq. We here consider the contribution of only the spin-independent GPDs H and

E. Throughout our analysis we will assume the Born approximation to the photon-quark

amplitude; i.e., the “handbag” approximation, corresponding to setting the Wilson line to

1 in light-cone gauge. In principle there can be rescattering corrections in the light-cone

gauge between the spectators at leading twist analogous to those which occur in diffractive

deep inelastic scattering [25], but these will not be considered here.

For circularly polarized initial and final photons (I, J are ↑ or ↓)) we have

t ↑↑(z, ζ) = t ↓↓(z, ζ) =
1

z − iε
+

1

z − ζ + iε
,

t ↑↓(z, ζ) = t ↓↑(z, ζ) = 0 . (3.3)

The two photon polarization vectors in light-cone gauge are given by

ε↑,↓ =

(

0 , &ε ↑,↓
⊥ ,

&ε ↑,↓
⊥ · &k⊥

2k+

)

, &ε ↑,↓
⊥ = ∓

1√
2





1

±i



 , (3.4)

where k denotes the appropriate photon momentum. The polarization vectors satisfy the

Lorentz condition k · ε = 0. For a longitudinally polarized initial photon, the Compton

amplitude is of order 1/Q and thus vanishes in the limit Q2 → ∞. At order 1/Q there are

several corrections to the simple structure in Eq. (3.2). We do not consider them here.
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The generalized parton distributions H , E are defined through matrix elements of the

bilinear vector and axial vector currents on the light-cone:

∫

dy−

8π
eizP+y−/2 〈P ′|ψ̄(0) γ+ ψ(y) |P 〉

∣

∣

∣

y+=0,y⊥=0

=
1

2P̄+
Ū(P ′)

[

H(z, ζ , t) γ+ + E(z, ζ , t)
i

2M
σ+α(−∆α)

]

U(P ) , (3.5)

The off-forward matrix elements given by Eq. (3.5) can be expressed in terms of overlaps of

LFWFs of the state [4, 5]. We now calculate the matrix elements in terms of the LFWFs.

For this, we take the state to be an electron in QED at one loop and consider the LFWFs

for this system.

A. DVCS in QED at one Loop

The light-front Fock state wavefunctions corresponding to the quantum fluctuations of a

physical electron can be systematically evaluated in QED perturbation theory. The light-

cone time ordered contribution for the state to the DVCS amplitude are given in Fig. 6 of

[4]. The state is expanded in Fock space, giving contributions from | e−γ〉 and | e−e−e+〉, in

addition to renormalizing the one-electron state. The two-particle state is expanded as,

∣

∣

∣
Ψ↑

two particle(P
+, &P⊥ = &0⊥)

〉

=

∫

dx d2&k⊥
√

x(1 − x) 16π3

[

ψ↑

+ 1
2

+1
(x,&k⊥)

∣

∣

∣

∣

+
1

2
+ 1 ; xP + , &k⊥

〉

+ ψ↑

+ 1
2
−1

(x,&k⊥)

∣

∣

∣

∣

+
1

2
− 1 ; xP + , &k⊥

〉

+ ψ↑

− 1
2

+1
(x,&k⊥)

∣

∣

∣

∣

−
1

2
+ 1 ; xP + , &k⊥

〉

+ ψ↑

− 1
2
−1

(x,&k⊥)

∣

∣

∣

∣

−
1

2
− 1 ; xP + , &k⊥

〉 ]

,(3.6)

where the two-particle states |sz
f , s

z
b; x,&k⊥〉 are normalized as in [4]. Here sz

f and sz
b denote

the z-component of the spins of the constituent fermion and boson, respectively, and the

variables x and &k⊥ refer to the momentum of the fermion. The light cone momentum fraction

xi =
k+

i

P+ satisfy 0 < xi ≤ 1,
∑

i xi = 1. We employ the light-cone gauge A+ = 0, so that

the gauge boson polarizations are physical. The three-particle state has a similar expansion.

Both the two- and three-particle Fock state components are given in [4]. The two-particle
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wave function for spin-up electron are [4, 13, 15]































ψ↑

+ 1
2

+1
(x,&k⊥) = −

√
2 −k1+ik2

x(1−x) ϕ ,

ψ↑

+ 1
2
−1

(x,&k⊥) = −
√

2 k1+ik2

1−x ϕ ,

ψ↑

− 1
2

+1
(x,&k⊥) = −

√
2 (M − m

x ) ϕ ,

ψ↑

− 1
2
−1

(x,&k⊥) = 0 ,































. (3.7)

ϕ(x,&k⊥) =
e√

1 − x

1

M2 −
$k2
⊥

+m2

x −
$k2
⊥

+λ2

1−x

. (3.8)

Similarly, the wave function for an electron with negative helicity can also be obtained.

Following references[4, 13, 15], we work in a generalized form of QED by assigning a

mass M to the external electrons, a distinct mass m for the internal electron lines, and a

nonzero mass λ for the internal photon lines, assuming the stability condition M < m + λ.

This provides a model for a composite fermion state with mass M with fermion and vector

“diquark” constituents. The electron in QED also has a one-particle component

∣

∣

∣
Ψ↑,↓

one particle(P
+, &P⊥ = &0⊥)

〉

=

∫

dx d2&k⊥√
x 16π3

16π3δ(1 − x) δ2(&k⊥) ψ(1)

∣

∣

∣

∣

±
1

2
; xP +,&k⊥

〉

(3.9)

where the single-constituent wavefunction is given by

ψ(1) =
√

Z . (3.10)

Here
√

Z is the wavefunction renormalization of the one-particle state and ensures overall

probability conservation. Since we are working to O(α), we can set Z = 1 in the 3 → 1

wavefunction overlap contributions. At x = 1, there are contributions from the overlap of

one particle states which depend on Z. We have imposed a cutoff on x near this point. Also,

in order to regulate the ultraviolet divergences, one has to introduce a regulator. Here, we

use a cutoff Λ on the transverse momentum k⊥ as a regulator.

In the domain ζ < z < 1, there are diagonal 2 → 2 overlap contributions to Eq.

(3.5), both helicity flip, F 22
+− (λ′ ,= λ) and helicity non-flip, F 22

++ (λ′ = λ) [4]. The GPDs

H(2→2)(z, ζ , t) and E(2→2)(z, ζ , t) are zero in the domain ζ −1 < z < 0, which corresponds to

emission and reabsorption of an e+ from a physical electron. Contributions to H(n→n)(z, ζ , t)

and E(n→n)(z, ζ , t) in that domain only appear beyond one-loop level since the DVCS am-

plitude contains integrations over z, y−, and x. When the integration over y− is performed,

the fermion part of the bilocal current yields a factor δ(z − x) and the anti-fermion part of
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the bilocal current yields a factor δ(z +x). The latter contribution is absent in the one-loop

DVCS amplitude of a electron target, which we consider in the present work.

We have,

F 22
++ =

√
1 − ζ

1 − ζ
2

H(2→2)(x, ζ , t) −
ζ2

4(1 − ζ
2)
√

1 − ζ
E(2→2)(x, ζ , t)

=

∫

d2&k⊥

16π3

[

ψ↑∗

+ 1
2
+1

(x′,&k′
⊥)ψ↑

+ 1
2
+1

(x,&k⊥) + ψ↑∗

+ 1
2
−1

(x′,&k′
⊥)ψ↑

+ 1
2
−1

(x,&k⊥)

+ ψ↑ ∗

− 1
2
+1

(x′,&k′
⊥)ψ↑

− 1
2
+1

(x,&k⊥)
]

, (3.11)

F 22
+− =

1√
1 − ζ

(∆1 − i∆2)

2M
E(2→2)(x, ζ , t)

=

∫

d2&k⊥

16π3

[

ψ↑∗

+ 1
2
−1

(x′,&k′
⊥)ψ↓

+ 1
2
−1

(x,&k⊥) + ψ↑∗

− 1
2
+1

(x′,&k′
⊥)ψ↓

− 1
2
+1

(x,&k⊥)
]

, (3.12)

where

x′ =
x − ζ

1 − ζ
, &k′

⊥ = &k⊥ −
1 − x

1 − ζ
&∆⊥ . (3.13)

Using the explicit form of the two-particle wave functions, we obtain,

F 22
++ =

e2

16π3

1

(1 − x)

[(1 − ζ) + x(x − ζ)]√
1 − ζ

[

INF
1 + INF

2 + [B(x, ζ) + M2x(1 − x) − m2(1 − x)

− λ2x]INF
3

]

+
e2

8π3

( M

1 − ζ
−

m

x − ζ

)(

M −
m

x

)x(1 − x)(x − ζ)√
1 − ζ

INF
3 . (3.14)

We use the notation

L1 = (k⊥)2 − 2k⊥ · ∆⊥ (1 − x)

(1 − ζ)
− B(x, ζ),

L2 = (k⊥)2 − M2x(1 − x) + m2(1 − x) + λ2x (3.15)

and B(x, ζ) = M2(1−x)(x−ζ)
(1−ζ)2 − (∆⊥)2(1−x)2

(1−ζ)2 − m2 (1−x)
(1−ζ) − λ2 (x−ζ)

(1−ζ) . The integrals are given by

INF
1 =

∫

d2k⊥

L1
= π log

[ Λ2

| B(x, ζ) |

]

INF
2 =

∫

d2k⊥

L2
= π log

[ Λ2

| −M2x(1 − x) + m2(1 − x) + λ2x |

]

INF
3 =

∫

d2k⊥

L1L2
= π

∫ 1

0

dβ
1

D(x, ζ , β)
(3.16)

where D(x, ζ , β) = βm2(1−x)−βM2x(1−x)+βλ2x−(1−β)B(x, ζ)−(1−β)2(1−x′)2(∆⊥)2.

Here Λ is the cutoff on the transverse momentum k⊥ and x′ = (x−ζ)
(1−ζ) .
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The helicity-flip part can be written as,

F 22
+− =

e2

8π3

[x(x − ζ)√
1 − ζ

(

M −
m

x

)

IF
1 −

(

M −
m

x

)x(1 − x)(x − ζ)

(1 − ζ)3/2
IF
2

]

−
e2

8π3

( M

1 − ζ
+

m

ζ − x

)x(x − ζ)√
1 − ζ

IF
1 , (3.17)

where IF
1 =

∫ d2k⊥k⊥
V

L1L2
and IF

2 =
∫ d2k⊥∆⊥

V

L1L2
. We have used the notation A⊥

V = A1 − iA2. These

integrals can be done using the method described in Section III of Ref. [17] and we obtain

IF
1 = π

∫ 1

0

dy
y (1 − x′)∆⊥

V

Q(x, ζ , y)
(3.18)

where Q(x, ζ , y) = (1 − y)[−M2x(1 − x) + m2(1 − x) + λ2x] − yB(x, ζ) − y2(1 − x′)2(∆⊥)2

and

IF
2 = π

∫ 1

0

dy ∆⊥
V

Q(x, ζ , y)
. (3.19)

The scale Λ dependence is suppressed in F 22
+−.

The contribution in the domain, 0 < z < ζ comes from an overlap of three-particle and

one-particle LFWFs. When the electron’s helicity is not flipped, this contribution is given

by [4],

F 31
++ =

√
1 − ζ

1 − ζ
2

H(3→1)(x, ζ , t) −
ζ2

4(1 − ζ
2)
√

1 − ζ
E(3→1)(x, ζ , t)

=
√

1 − ζ

∫

d2&k⊥

16π3

[

ψ↑

+ 1
2

+1
2

−
1
2

(x, 1 − ζ , ζ − x, &k⊥,−&∆⊥, &∆⊥ − &k⊥)

+ ψ↑

−
1
2

+ 1
2

+ 1
2

(x, 1 − ζ , ζ − x,&k⊥,−&∆⊥, &∆⊥ − &k⊥)

]

, (3.20)

and can be written as, using the three-particle wave function,

F 31
++ =

e2

8π3
(1 − ζ − ζx + x2)

x
√

1 − ζ

ζ (1 − x)

[ 1

(1 − x)
J ′NF

1 −
1

(1 − ζ)
J ′NF

2

]

−
e2

8π3

√
1 − ζ x2 (ζ − x)

ζ

(

M −
m

x

)( M

(1 − ζ)
+

m

(ζ − x)

)

J ′NF
3 ; (3.21)

with

J ′NF
1 = JNF

2 + [M2x(1 − x) − m2(1 − x) − λ2x]JNF
3

J ′NF
2 =

ζ

2x

[

JNF
2 − JNF

1 + [M2x(1 − x) − m2(1 − x) − λ2x + A(x, ζ)]JNF
3

]

J ′NF
3 = JNF

3 . (3.22)
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We denote

l1 = (k⊥)2 − M2x(1 − x) + m2(1 − x) + λ2x,

l2 = (k⊥)2 − 2k⊥ · ∆⊥x

ζ
+ A(x, ζ). (3.23)

and A(x, ζ) = 1
ζ(1−ζ)

[

x(1 − x)(∆⊥)2 + m2ζ(1 − ζ) + x ζ (ζ − x)M2]. The integrals can be

written as:

JNF
1 =

∫

d2k⊥

l1
= π log

[ Λ2

| −M2x(1 − x) + m2(1 − x) + λ2x |

]

JNF
2 =

∫

d2k⊥

l2
= π log

[ Λ2

| A(x, ζ) |

]

JNF
3 =

∫

d2k⊥

l1l2
= π

∫ 1

0

dβ
1

C(x, ζ , β)
. (3.24)

where C(x, ζ , β) = −βM2x(1 − x) + βm2(1 − x) + βλ2x + (1 − β)A(x, ζ) − (1 − β)2 x2

ζ2 ∆2
⊥.

The helicity-flip part is given by [4],

F 31
+− =

1√
1 − ζ

(∆1 − i∆2)

2M
E(3→1)(x, ζ , t)

=
√

1 − ζ

∫

d2&k⊥

16π3

[

ψ↓

+ 1
2

+1
2

−
1
2

(x, 1 − ζ , ζ − x, &k⊥,−&∆⊥, &∆⊥ − &k⊥)

+ ψ↓

−
1
2

+ 1
2

+ 1
2

(x, 1 − ζ , ζ − x,&k⊥,−&∆⊥, &∆⊥ − &k⊥)

]

. (3.25)

Using the three-particle wave function, this can be written as,

F 31
+− =

e2

8π3

√

1 − ζ
(

M −
m

x

)x2(ζ − x)

ζ

[ 1

(1 − ζ)
JF

2 −
1

(1 − x)
JF

1

]

+
e2

8π3

√

1 − ζ
[ M

(1 − ζ)
+

m

(ζ − x)

]x2(ζ − x)

ζ

1

(1 − x)
JF

1 , (3.26)

where

JF
1 =

∫

d2k⊥k⊥
V

l1l2
= π

∫ 1

0

dy
(1− y)∆⊥

V
x
ζ

P (x, ζ , y)

JF
2 =

∫

d2k⊥∆⊥
V

l1l2
= π

∫ 1

0

dy
∆⊥

V

P (x, ζ , y)
, (3.27)

with P (x, ζ , y) = (1 − y)A(x, ζ) − (1 − y)2 x2

ζ2 (∆⊥)2 + y[−M2x(1 − x) + m2(1 − x) + λ2x].

We calculate the DVCS amplitude given by Eq. (3.2) using the off-forward matrix ele-

ments calculated above. The real and imaginary parts are calculated separately using the

13



prescription
∫ 1

0

dx
1

x − ζ + iε
F (x, ζ) = P

∫ 1

0

dx
1

x − ζ
F (x, ζ) − iπF (ζ , ζ). (3.28)

Here P denotes the principal value defined as

P

∫ 1

0

dx
1

x − ζ
F (x, ζ) = lim

ε→0

[

∫ ζ−ε

0

1

x − ζ
F (x, ζ) +

∫ 1

ζ+ε

1

x − ζ
F (x, ζ)

]

(3.29)

where

F (x, ζ) = F 31
ij (x, ζ , ∆⊥), for 0 < x < ζ

= F 22
ij (x, ζ , ∆⊥), for ζ < x < 1

with ij = ++ for helicity non-flip and ij = +− for helicity flip amplitudes. Since the off-

forward matrix elements are continuous at x = ζ , F (ζ , ζ) = F 22
ij (x = ζ , ζ , ∆⊥) = F 31

ij (x =

ζ , ζ , ∆⊥). Note that, for an electron state, the contribution vanishes for x < 0 and the

principal value prescription cannot be used at x = 0. The off-forward matrix elements F 31

(which contribute in the kinematical region 0 < x < ζ) vanish as x → 0, as a result there

is no logarithmic divergence at this point for nonzero ζ . But, we need to be careful here as

when we consider the Fourier transform in σ space, ζ can go to zero and divergences from

small x can occur from F 22 which is finite and nonzero at x, ζ → 0.

The imaginary part of the amplitude when the electron helicity is not flipped is then

given by

Im[M++](ζ , ∆⊥) = πe2F 22
++(x = ζ , ζ , ∆⊥). (3.30)

A similar expression holds in the case when the electron helicity is flipped (Im[M+−](ζ , ∆⊥))

in which F++ are replaced by F+−. The helicity-flip DVCS amplitude is proportional to

(∆1 − i∆2) as seen from Eqs. (3.17) and (3.26). In the numerical results for the helicity

flip processes that we present here, for simplicity we have taken ∆2 = 0. The imaginary

part receives contributions from x = ζ . The off-forward matrix elements are continuous

at x = ζ , and in the last line of the above equation we have used this continuity. The

other regions of x contribute to the real part. It is to be emphasized that we are using the

handbag approximation of the DVCS amplitude. Contributions from the Wilson lines are

in general not zero, and they can give rise to new phase structures as seen in single-spin

asymmetries [26].
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FIG. 1: The handbag diagram for DVCS amplitude viewed in coordinate space. The position of

the struck quark differs by x− in the two wave functions (whereas x+ = x⊥ = 0).

The real part of the DVCS amplitude is given by,

Re [M++] (ζ , ∆⊥) = −e2

∫ ζ−ε1

ε

dx F 31
++(x, ζ , ∆⊥)

[ 1

x
+

1

x − ζ

]

−e2

∫ 1−ε

ζ+ε1

dx F 22
++(x, ζ , ∆⊥)

[ 1

x
+

1

x − ζ

]

. (3.31)

Similar expression holds for the helicity flip DVCS amplitude.

IV. CALCULATION OF THE FOURIER TRANSFORM

In order to obtain the DVCS amplitude in b− space, we take a Fourier transform in ζ as,

A++(σ, t) =
1

2π

∫ 1−ε2

ε2

dζeiσζ M++(ζ , ∆⊥),

A+−(σ, t) =
1

2π

∫ 1−ε2

ε2

dζeiσζ M+−(ζ , ∆⊥), (4.1)

where σ = 1
2P

+b− is the boost invariant longitudinal distance on the light-cone. The spatial

properties of deep inelastic scattering obtained from a Fourier transform of structure func-

tions from x = k+/P+ to b− space has been discussed by Hoyer [27]. In Fig. 1 we show the

handbag diagram of the DVCS amplitude in coordinate space, which is similar to Fig. 10

of the above reference.
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Both real and imaginary parts of the DVCS amplitude are obtained separately. The

real part of the amplitude depends on the cutoffs. As the off-forward matrix elements are

continuous at x = ζ , the DVCS amplitude is independent of the cutoff ε1. The cutoffs have

to be chosen such that ε2−ε1 ≥ ε, ε2 + ε1 < 1−ε, in order to have the correct principal value

integration. In our numerical analysis, we have taken ε = ε1 = ε2/2 = 0.001. As stated

before, the cutoff at x = 0 is imposed for the numerical calculation and has a small effect

on the result. If, instead of imposing a cutoff on transverse momentum, Λ, we imposed a

cutoff on the invariant mass [15], then the divergences at x = 1 would have been regulated

by a non-zero photon mass [28]. The DVCS amplitude at x = 1 also receives a contribution

from the single particle sector of the Fock space [4, 16, 17, 21], which we did not take into

account. A detailed discussion about the cutoff scheme is provided in Appendix B.

All Fourier transforms have been performed by numerically calculating the Fourier sine

and cosine transforms and then calculating the resultant by squaring them, adding and

taking the square root, thereby yielding the Fourier Spectrum. The amplitude is divided

by the normalization factor e4

16π3 . In Fig. 2, we have shown the two particle LFWFs of the

electron as a function of x for different k⊥. We have taken m = 0.5 MeV, M = 0.51 MeV

and λ = 0.02 MeV. The wave functions are similar for a slight change of parameter values,

however for m < M , there will be a node in ψ−1/2+1(x, k⊥) at m = xM , which is seen in

Fig. 1 (c). The effect of the node is almost negligible for these parameter values.

In Fig. 3 we have shown the Fourier Spectrum (FS) of the 2-particle LFWFs given by

Eqs. (3.7), for the same mass parameters as in Fig. 2. The Fourier transform (FT) has been

taken with respect to x for fixed values of transverse momentum k⊥. The wave functions

η1/2+1, η−1/2+1 and η1/2−1 are obtained as,

η↑

1/2+1(σ, k⊥) =
1

2π(−k1 + ik2)

∫ 1

0

dx eiσ(x−x̂k) ψ↑

1/2+1(x, k⊥),

η↑

1/2−1(σ, k⊥) =
1

2π(k1 + ik2)

∫ 1

0

dx eiσ(x−x̂k) ψ↑

1/2−1(x, k⊥),

η↑
−1/2+1(σ, k⊥) =

1

2π

∫ 1

0

dx eiσ(x−x̂k) ψ↑
−1/2+1(x, k⊥), (4.2)

where x̂k =
√

m2+k2
⊥

P

i

√
m2

i
+k2

⊥i

is the peak of the distribution - where all the constituents in the

n-particle Fock state have equal rapidity.

All helicity components of the wave function show peaks at σ = 0, the height of the peak

sharply increases as k⊥ decreases and decays away from σ = 0. In Fig. 4, we have shown the
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FIG. 2: Two particle LFWFs of the electron vs. x for M = 0.51 MeV, m = 0.5 MeV, λ = 0.02MeV

and fixed values of | k⊥ |= k. In (b) and (c) we have divided the LFWFS by the factors (k1 + ik2)

and (−k1 + ik2) respectively.

complete Fourier transforms of the two particle LFWF for k=0.2 corresponding to the FS

presented in Fig. 3(b) and (c) to illustrate the difference. Though the real and imaginary

parts of the FT (i.e., the cosine and sine transforms, respectively) individually exhibit a

diffraction pattern, in Fig. 4(a) they are just out of phase to produce any diffraction pattern

in the FS. It is well-known in the theory of the Fourier representation of signals [29] that the

amplitude and phase play different roles and in some cases many of the important features

of a signal are preserved only if the phase is retained.

The plots of the DVCS amplitude have been done by fixing −t and varying both ζ and
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FIG. 3: Fourier spectrum of the two particle LFWFs of the electron vs. σ for M = 0.51 MeV,

m = 0.5 MeV, λ = 0.02 MeV and fixed values of | k⊥ |= k. In (b) and (c) we have divided the

LFWFS by the factors (k1 + ik2) and (−k1 + ik2) respectively.

∆⊥. In Fig. 5(a) we have shown the imaginary part of the helicity flip DVCS amplitude

M+− as a function of ζ for different values of −t. We have taken m = 0.5 MeV, M = 0.51

MeV and λ = 0.02 MeV. Im[M+−] is zero as ζ → 0, increases continually with ζ and then

falls down sharply at the end. It increases for higher t for the same ζ . Fig. 5(b) shows

the helicity non-flip part of the corresponding amplitude Im[M++] vs. ζ . Unlike Im[M+−],

Im[M++] is non-vanishing at ζ = 0, it decreases for higher −t. The highest allowed value of

ζ is given by Eq. (2.8) for fixed t. Fig. 6(a) shows the plot of the real part of the helicity

flip DVCS amplitude for the same values of the parameters. Re[M+−] is non-vanishing at
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FIG. 4: Fourier transform (FT) of the two particle LFWFs of the electron vs. σ for M = 0.51

MeV, m = 0.5 MeV, λ = 0.02 MeV and fixed values of | k⊥ |= k. Re and Im denote the real and

imaginary parts of the FT and FS denotes the Fourier spectrum presented in Figs. 3(b) and (c).
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FIG. 5: Imaginary part of the DVCS amplitude for an electron vs. ζ for different values of t : (a)

helicity-flip part, (b) helicity non-flip part. We have taken M = 0.51 MeV, m = 0.5 MeV, λ = 0.02

MeV. The parameter t is given in MeV.

ζ → 0. For small ζ , it is almost flat for a fixed −t and then falls down at large ζ . Fig. 6(b)

shows the plot of the real part of the corresponding helicity non-flip amplitude M++ vs. ζ .

It shows a different functional behavior as it increases both for small as well as large ζ .

Fig. 7 (a) shows the FS of the imaginary part of the helicity flip amplitude vs. σ
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FIG. 6: Real part of the DVCS amplitude for an electron vs. ζ for different values of t : (a)

helicity-flip part, (b) helicity non-flip part. We have taken M = 0.51 MeV, m = 0.5 MeV, λ = 0.02

MeV. The parameter t is given in MeV.

for M = 0.51 MeV, m = 0.5 MeV and λ = 0.02 MeV. The peak of the FS of Im[M+−]

(i.e.,|Im[A+−]|) increases with | t |. The increasing behavior of the helicity flip amplitude

γ∗e↑(Se
z = 1/2) → γe↓(Se

z = −1/2) at small | t | reflects the fact that one needs to transfer

one unit of orbital angular momentum ∆Lz = ±1 to the electron to conserve Jz. This

assumes that the initial and final photon have transverse polarization, which is what we use.

A similar behavior is expected for γ∗p↑(Sp
z = 1/2) → γp↓(Sp

z = −1/2) amplitude. The FS

of Im[M+−] does not show a diffraction pattern in σ. In Fig. 7 (b) and (c) we have shown

the FS of the imaginary part of the helicity non-flip DVCS amplitude vs. σ for the same

parameter values. The helicity non-flip amplitude depends on the scale Λ. We have taken

Λ = Q. Fig. 7 (b) shows the plot for Q = 10 MeV, 5(c) is for Q = 50 MeV. Im [A++] shows

a diffraction pattern, the peak becomes narrower as | t | increases. In Fig. 8 we have shown

the complete Fourier transform of the imaginary part of the DVCS amplitude corresponding

to the FS presented in Fig. 7(a). It again shows that the real (cosine transform) and the

imaginary (sine transform) of the Fourier transform individually show a diffraction pattern

but they are out of phase and thus the FS does not show the diffraction pattern.

The number of minima in the diffraction pattern increases with | t | for fixed Q or, in

other words, the first minima move in with increase of | t |. For Q = 50 MeV, the behavior is

the same, the number of minima are higher for higher t for the same σ range. The number
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FIG. 7: Fourier spectrum of the imaginary part of the DVCS amplitude for an electron vs. σ for

different values of t : (a) when the electron helicity is flipped, (b) and (c) when the helicity is

not flipped. In (b) Q = 10 MeV, in (c) Q = 50 MeV. The mass parameters are M = 0.51 MeV,

m = 0.5 MeV, λ = 0.02 MeV. The parameter t is given in MeV.

and the positions of the minima are independent of Q. Only the magnitude of the peak

changes with Q. Some of the plots of the FS of the DVCS amplitude show similarities with

the FS of the LFWFs themselves. The generalized parton distributions are related to the

form factors, and the form factors can be written as overlaps of LFWFs. In fact, for a meson

in 1 +1 dimensional QCD, the form factor becomes an overlap of the LFWFs with different

longitudinal momentum fractions, x [30], and the contribution is similar to the 2 → 2 part

of DVCS amplitude.

Fig. 9 (a) shows the FS of the real part of the helicity flip amplitude vs. σ, where we
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FIG. 8: Fourier transform (FT) of the imaginary part of the helicity flip DVCS amplitude for an

electron vs. σ for t=-5.0. Re and Im denote the real and imaginary parts of the FT. The mass

parameters are M = 0.51 MeV, m = 0.5 MeV, λ=0.02 MeV.

chose the same values of the parameters, M = 0.51 MeV, m = 0.5 MeV and λ = 0.02 MeV.

The FS i.e., |Re[A+−]| shows a diffraction pattern in σ. With the increase of −t, the central

peak increases and its width decreases . The helicity flip part of the DVCS amplitude does

not depend on Q.

The non-existence of the diffraction pattern in the FS of the imaginary part of the helicity

flip amplitude in σ is due to its different behavior in ζ , as seen from Figs. 5 and 6. Im[M+−]

decreases smoothly as ζ decreases to vanish at ζ = 0 which is distinctly different from all

other amplitudes including Re[M+−]. All other amplitudes show some flatness or a plateau

in ζ and their FS in σ space shows a diffraction pattern.

In Fig. 9 (b) and (c), we have plotted the FS of the real part of the helicity non-flip

DVCS amplitude vs. σ. One can see the diffraction pattern here as well. Fig. 9(b) is

for Q = 10 MeV and (c) is for Q = 50 MeV. As before, the qualitative behaviors of the

diffraction pattern do not change with Q. For the same | t |, the number of minima and

their positions are independent of Q for any fixed | t |, only the height changes with Q. For

each Q, the peak at σ = 0 is sharper and higher as | t | increases.

Instead of using the ζ and t variables, we can define another set of variables ζ and T ,

where T is defined as T =
(

∆⊥

1−ζ

)2
. The arguments of the final state LFWF then are x′ = x−ζ

1−ζ
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FIG. 9: Fourier spectrum of the real part of the DVCS amplitude for an electron vs. σ for different

values of t : (a) when the electron helicity is flipped, (b) and (c) when the helicity is not flipped.

In (b) Q = 10 MeV, in (c) Q = 50 MeV. The mass parameters are M = 0.51 MeV, m = 0.5 MeV,

λ = 0.02 MeV. The parameter t is given in MeV.

and k′⊥ = k⊥ − (1−x)
√

T , in other words, the transverse momenta become decoupled from

ζ . We can now take ζ and T as independent variables and the GPDs as well as the DVCS

amplitude can be expressed in terms of them. They are however, connected through

t = −
ζ2M2

1 − ζ
− (1 − ζ)T. (4.3)

This relation determines the range of allowed values of ζ and T , such that t << Q2. In

practice, ζ can never become very close to 1. The ζ dependence of the DVCS amplitude now

comes purely from x′ for fixed T . Fig. 10 shows a plot of the imaginary part of the helicity
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FIG. 10: Imaginary part of the helicity non-flip DVCS amplitude for an electron vs. σ for fixed T

in MeV .

non-flip amplitude for fixed T vs. σ. For very small σ, the slope of the σ distribution is

given by,

d

dσ
ImA++ →

∫ 1−ε

ε

dxx(F 22
++(x, x, T ) + F 31

++(x, x, T )). (4.4)

Thus the slope and therefore the width of the σ distribution depends on the second moment

of the GPDs at x = ζ .

V. SIMULATED BOUND STATES

For the dressed electron state, the real part of the DVCS amplitude depends on the

cutoffs at x = 0 and x = 1. We have chosen the cutoff scheme discussed earlier. The cutoff

at x = 0 is taken for the numerical calculation and its effect on the result is small. However,

starting from this QED point-like model where the electron fluctuates to spin-half plus spin

one constituents, one can construct LFWFs for the hadrons. In the two- and three-particle

LFWFs for the electron, the bound state mass M appears in the energy denominators. A

differentiation of the QED LFWFs with respect to M2 improves the convergence at the end

points: x = 0, 1, as well as at high k2
⊥, thus simulating a bound state valence wavefunction.

Differentiating once with respect to M2 will generate a meson-like behavior of the LFWF.
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FIG. 11: Fourier spectrum of the LFWFs of the simulated hadron model vs. σ for M = 0.5 MeV,

m = λ = 1.0 MeV and fixed values of | k⊥ |= k. We have divided the LFWFs by the normalization

constant. In (b) and (c) we have divided by the factors (k1 + ik2) and (−k1 + ik2) respectively as

well.

Thus we write the hadron two-particle LFWFs as

ψ̃s1s2
(x, k⊥) = M2 ∂

∂M2
ψs1s2

(x, k⊥) (5.1)

where ψs1s2
(x, k⊥) are the electron LFWFs. Taking the Fourier transform in k⊥ also we can

write the wavefunctions in σ and transverse impact parameter b⊥ as

χs1s2
(σ, b⊥) =

1

(2π)3

∫ 1

0

dx

∫

d2k⊥eiσ(x−x̂k)eik⊥·b⊥ψ̃s1s2
(x, k⊥), (5.2)
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where the peak of the distribution x̂k =
√

m2+k2
⊥

P

i

√
m2

i
+k2

⊥i

. Writing k⊥ · b⊥ = kb cos θ, where

b = |b⊥| and k = |k⊥| and performing the integration over θ we obtain

χs1s2
(σ, b⊥) =

1

(2π)3

∫ 1

0

dx

∫

kdkeiσ(x−x̂k)(2π)J0(bk)ψ̃s1s2
(x, k⊥), (5.3)

where J0(bk) is the Bessel function. For the wavefunctions χ1/2±1 we have the explicit

momentum components (k1 ± ik2) present in the numerators. We use
∫

d2k⊥(k1 ± ik2)e
ik⊥·b⊥ = (−i)

∫

d2k⊥(
∂

∂b1
± i

∂

∂b2
)eik⊥·b⊥

= (−i)

∫

kdkdθ
k(b1 ± ib2)

b

∂

∂(kb)
eikb cos θ

= (−i)

∫

k2dk
(b1 ± ib2)

b

∂

∂(kb)
(2π)J0(kb)

= 2πi

∫

k2dk
(b1 ± ib2)

b
J1(kb) (5.4)

For the plot of the wavefunctions we set b2 = 0 in the above expression,

χ+1/2+1(σ, b) =
e

(2π)2

√
2M2i

∫

dx

∫

k2dk
x(1 − x)1/2J1(kb)eiσ(x−x̂k)

(M2x(1 − x) − k2 − m2(1 − x) − λ2x)2

χ+1/2−1(σ, b) =
e

(2π)2

√
2M2i

∫

dx

∫

k2dk
x2(1 − x)1/2J1(kb)eiσ(x−x̂k)

(M2x(1 − x) − k2 − m2(1 − x) − λ2x)2

χ−1/2+1(σ, b) =
e

(2π)2

√
2M2

∫

dx

∫

kdk
x2(1 − x)3/2J0(kb)eiσ(x−x̂k)

(M2x(1 − x) − k2 − m2(1 − x) − λ2x)2

(5.5)

For computational purpose, we use

Jn(kb) =
1

π

∫ π

0

dθ cos(nθ − kb sin θ). (5.6)

This procedure does not provide an actual model for a ‘meson’ wavefunction since the

two constituents have spin-half and spin-one. However, if we differentiate once more we can

simulate the fall-off at short distances which matches the fall-off wavefunction of a baryon,

in the sense that the form factor F1(Q2) computed from the Drell-Yan-West formula will

fall-off like 1
Q4 . In this case, we obtain a quark plus spin-one diquark model of a baryon.

Convolution of these wavefunctions in the same way as we have done for the dressed electron

wavefunctions will simulate the corresponding DVCS amplitudes for bound-state hadrons.

Note that the differentiation of the single-particle LFWF will give a vanishing result and

26



0
5

10

15

20

|b⊥||b⊥|

σ

χ1

0
2.5
5

7.5
10

|b⊥||b⊥|

σ

χ2

0

5

10

|b⊥||b⊥|

σ

χ3

FIG. 12: Fourier Spectrum of the LFWFs of the simulated hadron model plotted in σ, |b⊥| space

for M = 150 MeV, m = λ = 300 MeV. χ1,χ2 and χ3 are | χ1/2+1 |, | χ1/2−1 | and | χ−1/2+1 |,

respectively. In the plots |b⊥| runs from 0.001 to 0.01 and σ runs from -25 to +25.

as a result, the 3 → 1 contribution to the DVCS amplitude vanishes in this model. The

resulting γ∗p → γp DVCS amplitude has both real [2] and imaginary parts [3].

If we consider a dressed electron, the imaginary part from the pole at x = ζ survives

because of the numerator 1
x−ζ factor in the electron’s LFWF. This numerator behavior

reflects the spin-1 nature of the constituent boson. The x − ζ → 0 singularity is shielded

when we differentiate the final state n = 2 and n = 3 LFWFs with respect to M2 and,

as a result, the imaginary part of the amplitude vanishes in this model. We thus have

constructed a model where the DVCS amplitude is purely real. However, the forward virtual

Compton amplitude γ∗p → γ∗p (whose imaginary part gives the structure function) does
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FIG. 13: Real part of the DVCS amplitude for the simulated hadron state. The parameters are

M = 150,m = λ = 300 MeV. (a) Helicity flip amplitude vs. ζ, (b) Fourier spectrum of the same

vs. σ. The parameter t is in MeV2.

not have this property. The pole at x = ζ is not shielded since the initial and final n =

2 LFWFs are functions of x. It is worthwhile to point out that in general the LFWFs

for a hadron may be non-vanishing at the end points [31], and recent measurements of

single spin asymmetries suggest that the GPDs are non-vanishing at x = ζ [32]. A more

realistic estimate would require non-valence Fock states [33]. An equivalent but easier way

to construct the hadronic model is to differentiate the DVCS amplitudes with respect to the

invariant mass squared (M2) of the initial and final bound states. Thus one can calculate

the quantity M2
F

d
dM2

F

M2
I

d
dM2

I

Aij(MI , MF ) where MI , MF are the initial and final bound state

masses.

For numerical computation we use the discrete (in the sense that the denominator is

finite) version of the differentiation:

M2 dA

dM2
= M̄2 A(M2

1 ) − A(M2
2 )

δM2
(5.7)

where M̄2 = (M2
1 + M2

2 )/2 and δM2 = (M2
1 − M2

2 ). Then we have

M2
F

d

dM2
F

M2
I

d

dM2
I

Aij(MI , MF ) =
M̄2

I M̄2
F

δM2
I δM2

F

[

Aij(MI1, MF1) − Aij(MI1, MF2)

− Aij(MI2, MF1) + Aij(MI2, MF2)
]

; (5.8)

Aij(MI , MF ) is the DVCS amplitude for an electron. The differentiation with respect to M2
F
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FIG. 14: Real part of the DVCS amplitude for the simulated hadron bound state. The parameters

are M = 150,m = λ = 300 MeV. (a) Helicity non-flip amplitude vs. ζ, (b) Fourier spectrum of

the same vs. σ, (c) Structure function vs. x. The parameter t is in MeV2.

of the amplitudes (helicity flip and non-flip) brings in an extra factor of x − ζ and thus the

imaginary parts of the DVCS amplitudes vanish in this model, as discussed before. The real

parts of the DVCS amplitudes survive and show diffraction patterns. We take MI1, MF1 =

150 + 1.0 and MI2, MF2 = 150− 1.0 and the fixed parameters M = 150, m = λ = 300 MeV.

In Figs. 11 and 12 we have shown the FS of the 2-particle LFWFs for this model. The

parameter values are scaled in Fig. 11, but the qualitative behaviours are the same. Since

the wave function now vanishes at x = 0, 1, the FS is localized, and it decays sharply beyond

| σ |= 10. The peak decreases more sharply for higher k⊥ or lower |b⊥|. In Fig. 13 (a) and
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(b) we have shown the helicity-flip DVCS amplitude for the hadron model as functions of ζ

and its FS as a function of σ respectively. In Fig. 14 (a) and (b) we have shown the real

part of the helicity non-flip amplitudes of the same model as a function of ζ and its FS as a

function of σ respectively. Notice that the helicity non-flip part of the amplitude no longer

depends on the scale. The amplitude decreases as ζ increases, in contrast to the behavior

for the electron. The FS of both the helicity-flip and non-flip DVCS amplitudes show a

diffraction pattern in σ. Fig. 14(c) illustrates the structure function F2(x) for this model as

a function of x.

A. An Optical Analog

We propose an optics analog of the behavior of the FT of DVCS amplitude in σ. The

similarity of optics and quantum fields on the light cone was first explored long ago by

Sudarshan, Simon and Mukunda. They established the similarity of paraxial-wave optics

and light cone dynamics of scalar [34] and Maxwell equations [35]. In our case, we are

effectively looking at the interference between the initial and final waves of the scattered

proton. The final-state proton wavefunction is modified relative to the incident proton

wavefunction because of the momentum transferred to the quark in the hard Compton

scattering. The change in quark momentum along the longitudinal direction can be Fourier

transformed to a shift in the light-front position of the struck quark; thus one can simulate

a change in the quark’s longitudinal LF coordinate by an amount σ = 1
2b

−P+. This is

analogous to diffractive scattering of a wave in optics where σ plays the role of the physical

size of the scattering center in a one-dimensional system. We are using t to register the

change in the transverse momentum of the quark in the scattering. The positions of the

first minima move in with increasing | t |.

Notice that the integrals over x and ζ are of finite range. More importantly, the upper

limit of ζ integral is ζmax which in turn is determined by the value of −t. The finiteness of

slit width is a necessary condition for the occurrence of diffraction pattern in optics. Thus

when the integration is performed over the range 0 to ζmax, the finite range acts as a slit of

finite width and provides a necessary condition for the occurrence of diffraction pattern in

the Fourier transform of the DVCS amplitude.

When a diffraction pattern is produced, in analogy with single slit diffraction, we expect
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the position of the first minimum to be inversely proportional to ζmax. Since ζmax increases

with −t, we expect the position of the first minimum to move to a smaller value of σ,

in analogy with optical diffraction. In the case of the Fourier Spectrum of DVCS on the

quantum fluctuations of a lepton target in QED, and also in the corresponding hadronic

model, one sees that the diffractive patterns in σ sharpen and the positions of the first minima

typically move in with increasing momentum transfer. Thus the invariant longitudinal size of

the parton distribution becomes longer and the shape of the conjugate light-cone momentum

distribution becomes narrower with increasing | t |.

σ
√
−t (MeV) 1st Min 2nd Min 3rd Min

100 13.5

141 10.5 21.0

223 8.5 17.0 25.5

264 8.0 16.0 24.0

316 7.5 15.0 22.5

707 7.0 13.5 20.0

TABLE I: Positions of minima in the diffraction pattern for different −t for the simulated hadron

model DVCS amplitudes.

From Table I, we can see that for a fixed (−t), higher minima appear at the positions

integral multiple of lowest minimum. This is consistent with the single slit diffraction law

for nth minima: sin θn = nλ/w where λ is the wavelength of the light and w is the slit width.

Here σ plays the role of sin θn (for large separation(L) between the slit and the detector in

a single slit experiment, one can write sin θn ≈ σn

L ) and the ratio λ/w is determined by the

value of −t. Positions of the minima do not depend on the helicity. The minima appear at

the same places for both helicity flip and non-flip processes.

We also observe a relation between the invariant momentum transfer squared −t and the

distribution in σ: the first minimum in a diffraction pattern is determined by

sin θ1 =
σ1

√

L2 + σ2
1

=
λ

w
(5.9)

where σ1 is the position of the first minimum measured from the center of the diffraction

pattern. Introducing another parameter t0, with −t > −t0 we write the right hand side i.e.,

31



the ratio λ
w as, 1

log(−t+t0) where we have chosen −t0 = 2 × 104. Once t0 is fixed, the other

parameter L can be found; σ1 = 8.5 for −t = 5 × 104 gives

8.5√
L2 + 8.52

=
1

log(3 × 104)
= 0.2234

which gives L2 ≈ 1376. Using this value of L we can compare with the other data:

√
−t σ1

σ1√
L2+σ2

1

1
log(−t+t0)

264 8.0 0.211 0.213

316 7.5 0.198 0.204

707 7.0 0.185 0.176

TABLE II: Comparison of our proposed formula with the data.

Table II shows that our parameterization of λ
w in terms of −t is quite accurate.

If one Fourier transforms the change in transverse momentum ∆⊥ to impact space b⊥

[6, 7], then one would have the analog of a three-dimensional scattering center. In this sense,

studying the FT of the DVCS is very much like studying the Lorentz-invariant optics of the

proton. In our analysis we have computed DVCS on an electron at O(α) and its FT. Thus

we have obtained the diffractive optics of the quantum fluctuations of an electron.

It is interesting to recall that the scattering amplitude corresponding to an absorptive

(i.e., negative imaginary) potential which is confined to a sphere of finite radius exhibits a

diffraction pattern. For a classic treatment, see R. J. Glauber’s lectures [36]. For another

example of diffraction patterns in the angular distribution of elastic proton-nucleus scattering

using a multiple-scattering approach, see Ref. [37]. It is worthwhile to remember that in

these examples the optical potential is complex. In our case, we observe diffraction patterns

when we perform Fourier Transforms of real functions.

VI. LFWF FOR MESON IN HOLOGRAPHIC QCD AND THE DVCS AMPLI-

TUDE

The normalized holographic QCD LFWF for the meson (qq̄) from AdS/CFT derived in

[24] is

ΨL,k(x, b⊥) = BL,k

√

x(1 − x)JL(ξβL,kΛQCD) (6.1)
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FIG. 15: The ground state ( L = 0, k = 1) of two parton holographic light front wave function in

3D space. We have taken ΛQCD = 0.32 GeV. |b⊥| runs from 0.001 to 0.6 and σ from -25 to 25.

where BL,k = ΛQCD

[

(−1)LπJ1+L(βL,k)J1−L(βL,k)
]−1/2

and ξ =
√ x

1−x(1 − x)|b⊥| and βL,k is

the k-th zero of Bessel function JL. For ground state L = 0, k = 1 and we have

φ(x, b⊥) = Ψ0,1(x, b⊥) = ΛQCD

√

x(1 − x)
J0(ξβ0,1ΛQCD)√

πJ1(β0,1)
(6.2)

In Fig. 15, we have plotted the two-parton bound state holographic LFWF from AdS/CFT

correspondence in 3D coordinate space after taking the FT of Eq. (6.2) with respect to x.

The ADS/CFT correspondence gives only the wavefunction for the qq̄ sector. So, when we

consider the DVCS amplitude with this wavefunction we can have contribution only from

the 2 → 2 process. Then the DVCS amplitude can be written as

M(∆⊥, ζ) = −e2
q

∑

σ1,σ2

∫ 1

ζ

dx

[

1

x − ζ + iε
+

1

x − iε

]
∫

d2κ⊥

[

ψ∗
σ1,σ2

(

x − ζ

1 − ζ
, κ⊥ −

1 − x

1 − ζ
∆⊥

)

ψσ1,σ2
(x, κ⊥) +

ψ∗
σ1,σ2

(

1 − x

1 − ζ
, κ⊥ +

1 − x

1 − ζ
∆⊥

)

ψσ1,σ2
(1 − x, κ⊥)

]

. (6.3)

The transverse Fourier Transform of the DVCS amplitude gives the DVCS amplitude in

the transverse impact parameter space b⊥.

Ã(b⊥, ζ) =
1

(2π)2

∫

d2∆⊥ eib⊥·∆⊥ M(∆⊥, ζ) (6.4)
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We have from Eq. (1) of [24]

ψ(x, κ⊥) =
√

4π2

∫

d2b1⊥ e−ib1⊥·κ⊥ φ(x, b1⊥) . (6.5)

Then

Ã(b⊥, ζ) = (2π)4

∫

dx F (x, ζ)
1 − ζ

1 − x

[

φ∗(
x − ζ

1 − ζ
,
1 − ζ

1 − x
b⊥) φ(x,

1 − ζ

1 − x
b⊥)

+ φ∗(
1 − x

1 − ζ
,−

1 − ζ

1 − x
b⊥)φ(1 − x,−

1 − ζ

1 − x
b⊥)

]

. (6.6)

where F (x, ζ) = −e2
q(

1
x + 1

x−ζ ). Taking the FT of this DVCS amplitude with respect to ζ we

obtain the amplitude in the 3-dimensional impact parameter space σ, b⊥. Substituting the

wavefunctions given in Eq. (6.2), we obtain

A(σ, b⊥) =
1

2π

∫

dζeiσζÃ(b⊥, ζ)

= 2(2π)4
Λ2

QCD

2π2J1(β0,1)2

∫ 1

0

dζeiσζ

∫ 1

ζ

dx F (x, ζ)
√

x(x − ζ)
[

J0(X1)J0(X2)
]

(6.7)

where

X1 =
√

x(1 − x)
1 − ζ

1 − x
|b⊥| β0,1ΛQCD ,

X2 =
√

(1 − x)(x − ζ)
1

1 − x
|b⊥| β0,1ΛQCD .

In Fig. 16 we show the FS of the DVCS amplitude in σ space for different fixed values of

|b⊥|. Again we see the diffraction pattern in the σ space.

VII. SUMMARY AND CONCLUSIONS

The deeply virtual Compton scattering process γ∗p → γp provides a direct window into

hadron substructure which goes well beyond inclusive measurements. The DVCS amplitude

factorizes into the convolution of a hard perturbative amplitude, corresponding to Compton

scattering on a quark current, with the initial and final state light-front wavefunctions of

the target hadron. The LFWFs provide a general frame-independent representation of

relativistic composite hadrons, and they are universal and process independent.

In this paper, we have shown that the Fourier transform of the DVCS amplitude with

respect to the skewness variable ζ gives information of the proton structure in longitudinal

impact parameter space σ = 1
2P

+b−.
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FIG. 16: (a) The DVCS amplitude vs. ζ and (b) the Fourier spectrum of the DVCS amplitude

in the σ space using the light front wave function for meson obtained from holographic QCD [24].

We have taken ΛQCD = 0.32 GeV. Plots are in unit of e2
q .

As an illustration of our the general framework, we have worked with a simple relativistic

spin 1/2 system, namely the quantum fluctuations of a lepton at one loop in QED. The

different Fock components of the LFWFs in this case can be obtained from perturbation

theory. Our calculation is exact to O(α). This one-loop model provides a transparent basis

for understanding the structure of more general bound-state systems. By differentiating the

wavefunctions for the electron with respect to the square of the bound state mass M2, we

have simulated bound state valence wavefunctions.

We have noted that there are two different types of overlaps contributing to DVCS when

ζ is nonzero, namely a parton number conserving diagonal 2 → 2 overlap and a 3 → 1

overlap when an electron-positron pair of the initial state is annihilated. In fact, both these

contributions are necessary in order to obtain ζ independent form factors by taking the x

moment of the GPDs. This invariance is due to the Lorentz frame independence of the light-

front Fock representations of space-like local operator matrix elements and it reflects the

underlying connections of Fock states with different parton numbers implied by the equation

of motion. The Fourier transform of the amplitude with respect to ζ involves both type of

contributions in different kinematical regions.

We have introduced the light-cone longitudinal distance σ = P+b−/2 and have shown the
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σ dependence of the real and imaginary part of the DVCS amplitude. The DVCS amplitude

in σ space represents an interference of the initial and final state LFWFs. We have also

shown the σ dependence of the LFWFs themselves.

We have exhibited the light-front coordinate space structure of our model wavefunctions

by performing the Fourier transform in the longitudinal and transverse momentum space.

The wavefunctions exhibit diffraction patterns in the longitudinal coordinate space. We have

presented the FS of the real part of the DVCS amplitude as well as the structure function

in the models. The corresponding imaginary part of the model DVCS amplitudes vanish.

Very recently, valence parton bound state holographic LFWFs from AdS/CFT corre-

spondence have been given [24]. We have presented these wavefunctions for the meson in

full three dimensional light-front coordinate space. We have also calculated the real part of

the DVCS amplitude in the holographic model in light front longitudinal space for specific

choices of the impact parameter (b⊥). Again one observes diffraction patterns. Note that

the imaginary part of the DVCS amplitudes vanish also in this model.

Our analysis is the first to examine the longitudinal light cone coordinate σ = b−P+/2

dependence of LFWFs and DVCS amplitudes. Our results for the DVCS amplitude in σ are

analogous to diffractive scattering of a wave in optics where the σ distribution senses the

size of the one-dimensional scattering center. Thus studying DVCS γ∗p → γp in light-front

longitudinal coordinate space is very much like studying the Lorentz-invariant optics of the

proton.
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APPENDIX A: RELATION BETWEEN BURKARDT AND SOPER DENSITIES

The off-forward parton distribution appropriate for a spin-zero meson in the valence

approximation is defined by

H(x, ζ , t) =

∫

dy−

8π
eixP+y−/2〈P ′ | ψ̄(0)γ+ψ(y−) | P 〉y+=0

=

∫ 1

0

dz δ(x − z)θ(z − ζ)

∫

d2k⊥ψ∗(
z − ζ

1 − ζ
, k⊥ −

1 − z

1 − ζ
∆⊥)ψ(z, k⊥) . (A1)

For skewness ζ = 0,

H(x, ζ = 0, t) = H(x, ∆⊥) =

∫

d2k⊥ψ∗(x, k⊥ − (1 − x)∆⊥)ψ(x, k⊥)

=

∫

d2b⊥
(2π)2

e−i(1−x)b⊥·∆⊥φ∗(x, b⊥)φ(x, b⊥) (A2)

where the FT of the wavefunction is defined as

ψ(x, k⊥) =

∫

d2b⊥
(2π)2

e−ib⊥·k⊥φ(x, b⊥) . (A3)

The transverse Fourier transform of the zero skewness off-forward parton distribution H [6]

yields the impact parameter density function
∫

d2∆⊥

(2π)2
eiη⊥·∆⊥H(x, ∆⊥) =

∫

d2b⊥δ2[(1 − x)b⊥ − η⊥]φ∗(x, b⊥)φ(x, b⊥)

=
ρ(x, η⊥

1−x)

1 − x
, (A4)

where ρ(x, b⊥) is the Soper density defined in Eq. (5) of Ref. [8]. We thus find that the

density obtained by Burkardt is the same as the Soper density.

APPENDIX B: REGULATORS

Let us consider the real part of the DVCS amplitude for electron in one-loop QED given

by

Re M(ζ , ∆⊥) = −e2

∫ ζ

0

dx F 31(x, ζ , ∆⊥)

[

1

x
+

1

x − ζ

]

−e2

∫ 1

ζ

dx F 22(x, ζ , ∆⊥)

[

1

x
+

1

x − ζ

]

(B1)

which results after performing the transverse momentum integration. As described in the

text, we use an ultraviolet cutoff Λ on the transverse momentum.
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The integrands for various DVCS amplitudes may exhibit singular behavior when x is

near the end points. We also have a potential singularity when x → ζ which can be regulated

by using the principal value prescription. In the numerical work we implement the principal

value prescription by employing suitable regulators and ensuring regulator independence in

the limit where the regulator vanishes. We also note that we eventually integrate over ζ

which ranges between ζmin, which is close to zero and ζmax, which is determined by −t and

approaches 1 in the limit −t → ∞.

The light-cone momentum fractions must remain positive. Let ζmin = ζ + ε/2 for the

second integral. Since ζmax = 1−ε, to make sure that x remains greater than ζ in the second

integral, we choose xmax in the second integral to be 1− ε/2. Thus the regulated integral is

Re M(ζ , ∆⊥) = −e2

∫ ζ−ε/2

ε/2

dx F 31(x, ζ , ∆⊥)

[

1

x
+

1

x − ζ

]

−e2

∫ 1−ε/2

ζ+ε/2

dx F 22(x, ζ , ∆⊥)

[

1

x
+

1

x − ζ

]

. (B2)

It is important to note that when ζ is small, significant contribution to the integral comes

from the second term that involves F 22 and when ζ is large, significant contribution to the

integral comes from F 31. For the helicity-flip case, both F 22 and F 31 vanish as x → 0. For

the helicity non-flip amplitude, F 31 vanishes as x → 0, but F 22 is finite as x → 0. Thus

the only potential problem at small x occurs in Eq. (B2) for the second term involving F 22

when ζ is small and we obtain a logarithmic divergence due to this problem. This is directly

related to the non-vanishing of the electron wave function as x → 0. For helicity non-flip,

the function F 22 also diverges as x → 1. In this region, the DVCS amplitude also receives

contributions from the single-particle sector of the Fock space which we do not take into

account in the present calculation. If one uses an invariant mass cutoff, the divergences

at x = 0 and x = 1 would have been regulated by non-zero electron and photon masses

respectively. These regulators are not mandatory in our present calculations, and we have

employed the simpler regulators as described above.

APPENDIX C: AN ILLUSTRATIVE MODEL

Let us start from the expression for the Fourier transform

A(σ) =
1

2π

∫

dζ eiσζM(ζ) . (C1)
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The function A(σ) is in coordinate space and the function M(ζ) is in momentum space.

Let us approximate M by the following function:

M(ζ) = M0 for 0 < ζ < ζmax

= 0 for ζ > ζmax (C2)

Note that in the case where the dependence of the DVCS amplitude on ζ is almost flat, for

a first estimate for M0, one can take the value at ζ = 0. A more accurate estimate of M0

will be [M(ζ = 0) + M(ζ = ζmax]/2.

We have,

A(σ) =
M0

2π

∫ ζmax

0

dζ eiσζ

=
M0ζmax

2π

sin(σζmax/2)

σζmax/2
eiσζmax/2. (C3)

In this case, note that the cosine and sine transforms are completely in phase and the phase

of the Fourier transform does not contain any extra information. The amplitude (i.e., the

Fourier Spectrum) is given by

| A(σ) | =
M0ζmax

2π

| sin(σζmax/2) |
σζmax/2

. (C4)

The magnitude of the peak of the diffraction pattern

A(σ)max =
M0ζmax

2π
(C5)

and the first diffraction minimum occurs at

σ1 =
2π

ζmax
. (C6)

In the case of the DVCS amplitude whose functional dependence on ζ is very weak, we

can further predict the position of the minima as follows. The extension of the function ζmax

is given by

ζmax =
−t

2M2

(

√

1 +
4M2

−t
− 1

)

. (C7)

Thus we find a precise relation between the minima of the diffraction pattern and −t. Since

σ1 is inversely proportional to ζmax which in turn increases with −t, the inward movement of
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the first minimum with increasing −t is readily explained. On the other hand the peak height

is a product of M0 and ζmax. The amplitude M0 decreases monotonically with increasing

−t. On the other hand ζmax increases with increasing −t. Thus the peak height has non-

monotonic behavior with respect to −t.

In Table III we compare the numbers with the case of the real part of the helicity non-flip

amplitude presented in Figs. 14(a) and (b). Similarly one can also obtain estimates for the

helicity flip amplitudes.

√
−t ζmax M0 Peak (M0ζmax

2π ) First Minimum (σ1 = 2π
ζmax

)

100 0.48 0.04 3 × 10−3 13.09

316 0.84 0.03 4 × 10−3 7.48

707 0.96 0.0175 2.7 × 10−3 6.54

TABLE III: Simplified approximation for the real part of the helicity non-flip DVCS amplitude

shown in Figs. 14 (a) and (b).

The essential ingredients for the diffraction pattern in the Fourier Spectrum are two

characteristics of the DVCS amplitudes in the variable ζ :

• A step (i.e., a sharp rise) and

• a plateau.

These are the essential characteristics of a function which is almost a constant that seems

to be shared by the DVCS amplitudes that produce a diffraction pattern in the FS. The

imaginary part of the helicity-flip DVCS amplitude for the electron state (Fig. 5(a)) lacks

these properties and we do not observe any diffraction pattern in the corresponding Fourier

Spectrum (Fig. 7(a)).

It is interesting to note that the simple model we have discussed in this appendix appears

in antenna theory [38]. In the case of an aperture for which a uniform electric field is

maintained over a finite distance, outside of which the field is zero, the angular spectrum

which is the Fourier Spectrum of the aperture field distribution exhibits the diffraction

pattern discussed in this appendix.
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APPENDIX D: DVCS AMPLITUDE IN THREE DIMENSIONS

The significance of the amplitude in the boost-invariant σ space can also be explained

in the following way. The Dirac and Pauli form factors F1(t) and F2(t) respectively, can be

expressed in terms of the helicity non-flip part of the off-forward matrix element,

Let us consider the dressed electron in the frame ζ = 0. The form factor can be written

as [8]

F (t) =

∫ 1

0

dx

∫

d2b⊥e−i∆⊥·b⊥| ψ̃2(x, b⊥) |2 (D1)

The LFWFs in the mixed representation x, b⊥ are given by Eq. (1) of [24]. Note that the

LFWFs are zero outside the region 0 < x < 1. We denote :

Ψ2(x, b⊥) = ψ̃2(x, b⊥)θ(x)θ(1 − x)

Ψ3(x1, x2, b
⊥
1 , b⊥2 ) = ψ̃3(x1, x2, b

⊥
1 , b⊥2 )θ(x1)θ(x2)θ(1 − x1)θ(1 − x2) (D2)

for the two particle LFWF and similarly Ψ2 for the three-particle wave function. We take

FT of the LFWFs Ψ with respect to x ; and define

Φn(σi, b
⊥
i ) = {Πn−1

i=1

∫ +∞

−∞

dσie
−iσixi}Ψn(xi, b

⊥
i ) (D3)

where σi are the boost invariant longitudinal distance on the light cone, conjugate to xi =

k+
i /P+. There are n − 1 independent σi as well as b⊥i . In terms of these, we can write,

F (t) =

∫

dx

∫

d2b⊥e−i∆⊥·b⊥
∫

dσ1

∫

dσ2e
iσ1xe−iσ2xΦ∗

2(σ1, b
⊥)Φ2(σ2, b

⊥)

= 2π

∫

d2b⊥e−i∆⊥·b⊥
∫

dσ| Φ2(σ, b⊥) |2 (D4)

Note that as Φn are the FT of the wave functions Ψn rather than ψ̃n, it is mathematically

correct to take the x- integrals from −∞ to +∞. When ζ is non-zero, the form factor

receives contributions from 2 − 2 and 3 − 1 components of the GPDs H and E. They can

be obtained from,
∫

dx [F 22
++(x, ζ , t)θ(x− ζ) + F 31

++(x, ζ , t)θ(ζ − x)]

=
√

1 − ζF1(t) −
ζ2

4
√

1 − ζ
F2(t)

≈
∫ 1

0

dx

∫

d2b⊥e−i∆⊥·b⊥
[

√

1 − ζψ̃↑
3(x, 1 − ζ , ζ − x,−b⊥)θ(ζ − x)

+ ψ̃∗,↑
2 (x′,

b⊥

1 − x′
)ψ̃↑

2(x,
b⊥

1 − x′
)
(1 − ζ)2

(1 − x)2
θ(x − ζ)

]

. (D5)
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∫ 1

0

dx [F 22
+−(x, ζ , t)θ(x − ζ) + F 31

+−(x, ζ , t)θ(ζ − x)]

=
1√

1 − ζ

(∆1 − i∆2)(1 − ζ/2)

2M
F2(t)

≈
∫ 1

0

dx

∫

d2b⊥e−i∆⊥·b⊥
[

√

1 − ζψ̃↓
3(x, 1 − ζ , ζ − x,−b⊥)θ(ζ − x)

+ψ̃∗,↑
2 (x′,

b⊥

1 − x′
)ψ̃↓

2(x,
b⊥

1 − x′
)
(1 − ζ)2

(1 − x)2
θ(x − ζ)

]

. (D6)

x′ = x−ζ
1−ζ . Here we have suppressed the explicit helicity indices and used

F1(t) =

∫ 1

0

H(x, ζ , t)

1 − ζ
2

,

F2(t) =

∫ 1

0

E(x, ζ , t)

1 − ζ
2

, (D7)

The form factors F1(t) and F2(t) can be obtained in terms of overlaps of LFWFs in the

mixed representation ψ̃n from Eq. (D5) and (D6). Note that as the argument of the

wave functions are b⊥

1−x′ , these equations cannot be expressed as an overlap of the FT wave

functions Φn(σi, b⊥i ) in position space.

However, in the mixed representation, one can write,

F1(t) =

∫

d2b⊥ei∆⊥·b⊥
[

∫ ζ

0

dxR31(x, ζ , b⊥) +

∫ 1

ζ

dxR22(x, ζ , b⊥)
]

=

∫ 1

0

dx

∫

d2b⊥ei∆⊥·b⊥R(x, ζ , b⊥) =

∫ 1

0

dx

∫

d2b′⊥ei∆′⊥·b′⊥ρ(x, b′⊥); (D8)

F2(t) =

∫

d2b⊥ei∆⊥·b⊥
[

∫ ζ

0

dxR̃31(x, ζ , b⊥) +

∫ 1

ζ

dxR̃22(x, ζ , b⊥)
]

=

∫ 1

0

dx

∫

d2b⊥ei∆⊥·b⊥R̃(x, ζ , b⊥) =

∫ 1

0

dx

∫

d2b′⊥ei∆′⊥·b′⊥ ρ̃(x, b′⊥). (D9)

R(x, ζ , b⊥) and R̃(x, ζ , b⊥) can be obtained in terms of off-diagonal overlaps of LFWFs

ψ̃n(xi, b⊥i ) and can be obtained from the above equations. ρ(x, b′⊥) and ρ̃(x, b′⊥) are Soper’s

distributions in the frame ζ = 0. It can be shown that

ρ̃(x, b⊥) = −2iM
∂

∂b

(b1 + ib2)

b
ρ(x, b⊥). (D10)

Eqs. (D8) and (D9) show the relation between the generalized correlation functions R and

R̃ with the Soper distribution due to covariance of the form factor. However, the functions

R and R̃ do not have a probability interpretation, unlike Soper’s distribution.

42



In the imaginary part of the DVCS amplitude, we have the GPDs integrated with a delta

function,

Im[M++] = N

∫ 1

0

dx
[

δ(x − ζ)

√
1 − ζ

1 − ζ
2

H(2→2)(x, ζ , t)

−
ζ2

4(1 − ζ
2)
√

1 − ζ
E(2→2)(x, ζ , t)δ(ζ − x)

]

(D11)

In terms of the correlation functions defined above, this can be written as

Im[M++] = N

∫

d2b⊥ei∆⊥·b⊥
∫ 1

0

dx
{

√

1 − ζ
[

θ(ζ − x)R31(x, ζ , b⊥)

+θ(x − ζ)R22(x, ζ , b⊥)
]

δ(x − ζ) −
ζ2

4
√

1 − ζ

[

θ(ζ − x)R̃31(x, ζ , b⊥)

+θ(x − ζ)R̃22(x, ζ , b⊥)
]

δ(x − ζ)
}

=

∫

d2b⊥ei∆⊥·b⊥
∫ 1

0

dx
{

√

1 − ζR(x, ζ , b⊥)δ(x − ζ)

−
ζ2

4
√

1 − ζ
R̃(x, ζ , b⊥)δ(x − ζ)

}

(D12)

N is the normalization constant. Integrating over x we obtain

Im[M++] = N

∫

d2b⊥ei∆⊥·b⊥
{

√

1 − ζR(x = ζ , b⊥)

−
ζ2

4
√

1 − ζ
R̃(x = ζ , b⊥)

}

(D13)

Thus, the FT of the imaginary part of the DVCS amplitude with respect to ∆⊥ gives both

R(x, ζ , b⊥) and R̃(x, ζ , b⊥) where x of the struck parton is now fixed at x = ζ . These, in turn,

are related to Soper’s distributions ρ(x, b⊥) through Eq. (D8) and (D9). This is a mixed

coordinate and momentum space representation. The above relation can be generalized to a

hadron in a model independent way. Introducing the complete 3D spatial amplitude ρ̄(σ, b⊥)

at fixed light front time τ , we can write,

Im[M++] = N

∫

dσe−iσζ

∫

d2b⊥e−i∆⊥·b⊥ ρ̄(σ, b⊥). (D14)

Here σ is conjugate to ζ . Note that as we are at fixed τ rather than at fixed time, there is

no conceptual problem due to Lorentz boosts.

The physics of the real part of the DVCS amplitude is more involved. However, it is

related to the imaginary part by a dispersion relation in x. The real part can be expressed

in terms of the densities ρ and ρ̃ as well, however, it contains a principal value (PV) integral
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over x. We can call the result of the PV integral γ(ζ , b⊥). Again, after taking a FT in ζ we

obtain the amplitude in full 3D coordinate space.
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